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We Interpret the valence band (VD) photoelectron spectra (UPS and IPS)

for the high-temperature superconductors (BTSC's)0 Laa-%BaxCuO4 and

YBatCusOY (herein referred to as La and 123). We identify the source of the

"myster7" feature at 9.5 eV in the UPS C1i and explain the large differences

seen between the calculated density of states (DOS) and the experimental

spectra in the VB region (2].

The basic VB electronic structure of the WRSC's can be described by an

extended Hubbard model, characterized by the transfer or hopping integral t,

the Cu and 0 orbital energies e • and tp, the intra-site Coulomb repulsion

energies U4 and Up, and the inter-site repulsion energies U4p and U,#* (i.e.

between neighboring Cu-O and 0-0 atoms). The magnitudes of these U

parameters are critical to the mechanism for the superconductivity. As a

consequence, much effort has gone into theoretically calculating these

parameters, but wide disagreement still exists over the magnitudes.

Theoretical values for U. in the range 6.5-10 eV, U, (actually Up-U..*) in

the range 7-14 eV, and Us, in the range 0.6-1.6 eV have been reported (3),

with the smaller results favored based on the quality of the calculations. No

results for Up,* have been reported. Our empirical results indicate that U-

9.5, Up = 12, and U., = 4.5 eV for 123. The latter two are much larger than

previously thought for these metallic systems, although Up-Upp• is in

agreement with the best theoretical results above.

We generalize the theory of vanderLaan et al (4) in an extended

Rubbard model to interpret the spectra. All of the data can be understood

within a CuO.('.-2)- cluster model, which I valid when the U's are large

relative to the bandwidths (4), i.e. when correlation effects dominate covalent

or hybridization effects. Both La and CuO contain CuOq groups [5), having 4

short and 2 long Cu-0 bonds. The 123 HTSC contains CuOv and planar CuOt
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groups [51. The different n may altar the relative intensities of warious

features an pointed out below, but similar features are present in each case.

The different bond lengthe may increase the widths of the spectral features,

but little else since correlation dominates.

The CuOa(s -  cluster has one hole shared between the Cu 3d and 0

2p shells In the ground state, which we term the v (valence) states. We

Indicate the location of the v hole by d (Cu 3d) or p (0 2p). In the case of

two holes on the oxygens, we distinguish two holes on the eame 0 (pA), on

ortho neighboring 0 atoms (pp-), or on pars 0 atoms (pp') of the cluster.

Furthermore, neighboring pp holes can dimerize (61, so we distinguish

between two holes in bonded (pp%) and antibonded (ppe,) 0 pairs.

Most of the 0 atoms actually participate in two CuO. clusters.

Consistent with previous work (7], we account for this by defining the

effective parameter, c= c,' + U,., where Up. includes the interaction of a

hole in an 0 p orbital with its environment. In general Up@ wil be loes than

Use due to polarization.

The v states, as reflected by the theoretical DOS (21, can be described

as having the Cu-O bonding (eb) and antibonding (Ct) orbitals centered at 4

and 0 eV and the nonbonding Cu and 0 orbitals at 2 eV. The 0 features each

have a width 217 = 4 eV due to the 0-0 bonding and antibonding character

and the Cu-O dispersion. The tb and +t wavefunctions can be expressed as

(41,

+. = d coOt - p sinOt (la)

+b= d sins + p coso-3, (Ib) 0

where 01 = 0.5 tan-1(2t/A). We also define the Cu-O hybridization shift a I

0.5 sqrt(As44t t ) - A/2, which is utilized in Table 1 to gire the energies. In

this picture, the ground state of an average CuO cluster i located at I eV

ai.call and/or

LQUAuTy1ROSPEC'j
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having the energy c-45+r/ 2 = ca-a, which we use as a reference energy for

the v" states. In CuO, the hybridization shift r in smaller, and we shall see

below that A=¢t- a has increased to I *V. This increase can be attributed to

an increase In tv, or Up*, and reflects a smaller lattice polarization response

due to the more Ionic character in CuO.

The photoemiasion process involves excitation from the ground v state

(i.e. the +0 state) to the vA states. Consistent with the final state rule (81,

the photoelectron spectra reflect the vA DOS, not the v DOS. In a highly

correlated system, the v and v DOS are very different, explaining the well-

known differences seen (2) between the theoretical DOS and the photoelectron

spectra for the RTSC's.

Table 1 lists the 6 different vs configurations. These configurations

hybridize, i.e. 1,2,5 & 6 have the same symmetry and mix together to give +w

= 1:M conve. The coefficients c. are obtained by diagonalizing the 4x4

Hamiltonian matrix, assuming each of the 4 configurations (pp,, dp, ds, & pt)

are orthogonal, and that ppP, pI, and d' have non-zero off-diagonal matrix

elements with dp but zero with each other. The two ppe states (3 & 4) have

different symmetry and mix separately. The sudden approximation and the

cross-sections for ionization from the 0 2p and Cu 3d shells, a, and ad, can

then be utilized to give the expected relative photoemission intensities,

I(m) = TA (<+.,*I'=>)2 o = A (Ze c. <t.#,in,.>)2 ai, (2)

for the six v2 states. In eq. 2, #1 indicates the orbital of the hole created by

the photoemission process, either d or p, where the new p hole may be

created ortho, para or on the same 0 atom ss the initial p hole, (Le. to create

the ppe, pl, or ppP configurations with relative cross-section oi = ap/n,

(n-2}ar,/n, and 0p/n, respectively). or,/ad i roughly 2. for 21 eV, 1. for 45,

and 0.3 for 100 eV photons (2,91. Results from eq. 2 utilizing the parameters
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in Table 1 are given In Fig. 2. States 1 & 2 and 3 & 4 are heavily mixed so

that they are the only ones to experience a significant hybridization shift, 6,

and r, as shown in Table 1.

At low photon energies, the sudden approximation assumed above breaks

down 110). The opposite extreme, the adiabatic limits gives intensity only in

the lowest state of each symmetry, 1 and 3, since the system i able to relax

before escape of the photoelectron. Since the relaxation time goes as the

reciprocal of the shakeup energy [101, we expect that the high energy

features, such as the dl and pa "satelites", will have much smaller intensity

than that predicted by eq. 2.

The valence band features. Photon energy dependent data (11-131 in

Figure 1 show that the VB features around 5.5 eV in CuO and 2.5 and 5 eV in

123 arise more from ap, and the feature at 3 in Cue and 4.2 eV in 123 from ad

(13-151. Based on our estimated energies, for CuO we assign the 5.5-eV

feature to pp3 and pp' and the 3-eV to dp. In 123, we assign the 5-eV to

ppe%, the 4.2 to dp, and the 2.5 to pp', where we indicate the dominant

character of each hybridized state.

These assignments are also consistent with the results in Fig. 2. At low

hv when a, dominates ra, J(ppe) + 1(2) in about equal to 1(l) at A I in

agreement with the data for CuO, while it is much greater than I(I) at A Z 0

in agreement with the data for 123. At large hu when ad dominates ap, 1(1)

and 1(2) dominate. The calculated results in Fig. 2 indicate that 1(1)/1(2)

should equal about I at A = 1, and about 0.5 at A = 0, whereas the XPS

results In Fig. I Indicate that these ratios are qualitatively much larger. The

enhancement of 1(1) in both cases arises because of intensity transfer from

the d2 state as a result of relaxation, which occurs even at XPS energies.

A character switch of state I from more dp to pp' and vice versa for
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state 2 between CuO and 123 arises because A decreases from I eV to 0 eV.

The smaller A In 123, due to a smaller t p or Up*, is consistent with the Cu 2 p

XPS and XES data to be discussed elsewhere [16]. States I and 2 remain a

few eV apart in spite of this switch because of the heavy CI mixing. Since

state 1 is more of pp' character in the SC's, the additional "charge carrier

holes" (present in the La after Sr doping and in the 123 when 7-x is greater

than 6.5) are more on the oxygens.

Angle resolved PES data on single crystals of 123 show that the 2.5 eV

feature i the only one which shows a small angular dispersion and a photon

energy dependence [131. The near lack of dispersion is consistent with our

highly correlated cluster model. The small dispersion of the 2.5 eV feature

probably comes from inter-CuO4 cluster interaction, which is expected to be

the largest when both holes are on the bordering 0 atoms.

The d' satellite. The principal multiplet of the d' final state for CuO is

known to fall at 12.5 with a smaller one around 10 eV li). The intensity of

the d2 final state is enhanced by the Cu 2p - 3d (or 2p - 4sp in CuzO and

Cu) resonant excitation process followed by an Auger decay (111. This

process is resonant between 72-80 eV. The SC's exhibit a behavior similar to

CuO (141. The satellites in CutO and Cu do not have non-resonant components

1111 because the UPS for CuO and Cu reflect the one-hole DOS. However, the

VB XPS of CuO and the HTSC's can and do show a significant nonresonant ds

satellite (see Figure 1) (171; indeed, it should grow as one approaches the

sudden limit. This possibility makes it even more difficult to interpret the

data for the HTSC's, since the dt satellite at 12.5 in the VB XPS falls at or

near the same energy as the Ba spin-orbit split Sp features [11, which have

been very controversial.

For the XPS (Figure Ia), Miller et al (11 have indicated that the 12.5 eV



feature results from the Ba representative of the bulk, and the 14 and 16 eV

features result from Ba bonded to OH- and CO" on the surface. Steiner et al

(181 indicate that the 12.5 ey feature in representative of those Ba atoms

surrounded by 0 atoms, but that the 14 and 16 eV features arise from those

ba atoms with either neighboring 0 defects or 0 atoms with holes (i.e. 0

instead of Os-). Recent data [131 on single crystals cleaved in-situ (Fig. 1),

when impurities are not expected, reveal only the 14 and 16 eV features at

glancing emission (Le. representative of the surface), and two additional

features shifted up by about 1 eV at normal emission (Le. more representative

of the bulk). This shift has been interpreted as a surface chemical shift, but

it is actually consistent with the Steiner data and Interpretation, if one

assumes more 0 defects exist at the surface than in the bulk. Recently

Weaver et al [19] reported XPS data for sintered 123 which actually revealed

only the features at 12.5 and 14 eV. This indicates either that their surfaces

were free of impurities or that the bulk and surface were totally oxidized (i.e.

within the Miller or Steiner interpretations). More experimental data is

required here to conclusively decide on these two alternatives, but in our

opinion the Steiner interpretation appears the more plausible at this time.

Regardless of the interpretation, the intensity of the d 2 feature in clearly

much smaller than that predicted In Pig. 2 because of the relaxation to state

1. Theory Indicates that l(d') should be smaller in 123 than in CuO, so the

amount of the d' satellite actually present in the XPS for the HTSC's is still

uncertain.

The p% feature. The pp% state Is believed to be responsible for the

"mystery" peak found at 9.5 eV in the UPS. Although initially it was thought

to arise from carbon on the surface [20], more recent data [13, 211 (Pig. lb)

Indicate that it is intrinsic to the material. igure lb indicates that such a



feature also appears for CuO (11,121. This feature does not appear for CusO,

as expected since UPS reflects the one-hole DOS in CutO. Thus this feature

is not unique to the SC's; it naturally appears for those systems with two-hole

photoemission final states.

I The 9.5 eV feature has a cross-sectional dependence similar to crp

114,151, consistent with the pp* identification. Figure 2 gives the combined

Intensity, I(pp%) + I(ppea). We expect that I(pp%)/l(ppG,) will be near 1 at

XPS energies (this may also depend on the n in CuOe), and will be much

smaller at UPS energies due to relaxation. Therefore I(pp%) should decrease

because of relaxation, but increase because of ap as hu decreases. A small

contribution also exists from or, so that it in visible even at XPS energies.

The date show that I(pp%) is larger for 123 than for CuO and La. This is

consistent with Fig. 2, and with the larger ppe cross-section expected for

smaller n.

An upper estimate of the two-center ppo hole-hole repulsion, Uge, can

be obtained from the Klopman approximation 1221,

UU = e2/(rul + (2e 2 /(U, + Uj))2)1/2, (3)

where ru is the interatomic distance and U1 and Uj are the corresponding

intra-atomic repulsion energies. Equation 2 gives a value for Upp around 4.8

eV assuming r-e Is 2.7 A*. The experimental energies of 9.5 and 5.0 eV for

pp% and pp. in 123 suggests that the ppo final state energy is 7.2 eV.

This gives an empirical estimate for Upe of 4.2 eV, very close to the Mopman

theoretical result, which does not include the effects of interatomic screening.

The above result shows that metallic screening of two holes, which are

spatially separated on neighboring 0 atoms, is not very significant. This is in

contrast to two Cu-O holes, where Table I indicates the optimal U, = I eV,

while eq. 2 estimates U.. at 6L eV assuming rc".0 is 1.9 As. This large
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reduction in U., may result from charge transfer into the Cu 4sp levels to

screen the Cu-O holes. Although metallic screening, which results from virtual

electron-hole (e-p) pair excitations at the Fermi level, is not expected to be

large in an insulator such as CuO, screening effects are expected to be much

larger In metals, such as the TSC's. The aboveI results show that Ud, is

significantly reduced in both, and Ue' remains large in both. The lack of a

significant change in the U's between CuO and the STSC's indicates that the

DOS at the Fermi level in the RTSC's must be very small.

The assignment of the 9.5 eV feature explains some of its interesting

characteristics. Comparison of data [141 for YBazCusOz (123.) with 0 levels at

x = 6.95, 6.5, and 6.05 reveal that the reduced 0 materials, 123" and 123&.

have two peaks around 9.4 and 11.5 eV. It is known that the oxygen decrease

resulting from quenching or heating in vacuum occurs primarily from the CuO4

chains (231. This may leave distorted Cu04 or even peroxide O clusters [61

which have an 0-0 distance less than that in the ordered CuOs groups, and

hence a larger U,,*. A U,99 of 6.5 eV requires an 0-0 distance of less than

2 As. Very recent data [24) on the new Bi and Th type HTSC's indicate a

single feature around 10 eV similar to that for 123.

The ps feature. Evidence for the existence of the pt feature, estimated

to appear at 17.5 eV for CuO can indeed be found around 17 eV in the XPS

for CuO in Figure 1. UPS data for 123 (13) may reveal the p feature

around 16 eV, moved up by at least I eV as predicted. Figure I shows UPS

at hi 1 200 and 40 eV. The relative intensity of these two peaks changes

when normally one would expect the relative intensity of the 5pt/ and Sps/2

peaks to remain constant with photon energy. But, the 40 eV spectrum should

have a larger cp contribution. This suggests that the hV z 40 eV spectrum

may have a contribution from the ps state, such as that indicated in Figure I.
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Its intensity may arise as much from cra as from c. at large hv, although we

indicate only the ap component in Pig. 2. Its theoretical intensity is

remarkably independent of A. At low h, when ap dominates, its intensity

remains small because of relaxation.

In summary, we have obtained a set of Hubbard parameters and derived

Intensity expressions which consistently predict the various features seen in

the UPS data. The U's involving the 0 atoms, Up and Uppe, are much larger

in the metallic HTSC's than expected. We have assigned the UPS feature at

9.5 eV, and explained its characteristics. We will show elsewhere (16J that the

Hubbard parameters determined here are consistent with core level XPS, x-ray

emission and absorption, and Auger data.



TABLE I Summary of hole states revealed in the photoelectron
data, and estimated energies using the following optimal values
for the Hubbard parameters in eV,:

61 = 2 ed : 2 Up = 12, 13 U4 :9.5,10.2
62 = 0.5,0.8 ep = 2, 3 Up,* = 4.5, 4 UI, =1
r : 2 up Z 0. a = 1, 0.5 A : 0, 1.

Stateb Energy expression Caic. E. Exp. E. Remark
ev .4  -eve

G.S. and IPES, v
a.) d - 61 T r 02 - heavily

+b) p c+61 ; r 4 ;T 2 - .mixed

UPS and ES. v2
1)t ppp Cp + A - 62 + a 2.5 2.5 heavily

2)e dp c, + U., +62 +a 4.5 4.2 mixed
3) pp0 . cp+ A +U,," -rl+a 5.5 5.
4) ppob cp+ A +U,,* +rf+a 9.5 9.5 mystery peak
5) d s  Ca + U. + a 12.5 12.5 Cu sat.
6) p2  €, + A + Up + a 15 16

'Parameters for 123 indicated first, those for CuO second.
bThe dominant character in the hybridized states is given.
'The Calc. E and Exp. E columns indicate the results for 123.
*The calculated E is defined relative to the ground vi (d) state energy
a -a. The vl(d) energy defines the Fermi level relative to the vacuum level
at zero.
*The dominant character switches an described in the text, and thus the sign
in front of 6l is the opposite for CuO.
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Figure Captions

Figure Is) Comparison of photoelectron spectra in the range 10-18 eV for 123.

Data from refs. 13 (hv = 100 and 40) and 1 (1w a 1487).

ib) Comparison of UPS spectra for CuO and 123 taken with the

indicated photon energies in eV. Data for CuO from refs. 17 (hv 2

1487), 11 (hw = 74) and 12 (hv = 21). Data for 123 from ref. 13

(hv = 25 and 74) and I (hu = 1487).

Figure 2) Calculated photoemission intensities for the vA states obtained

from evaluation of eq. 2, utilizing the parameters in Table I for

CuO clusters. The intensities have teen normalized so that the

sum in ap + ad.
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